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Whether or not the cellular automaton~CA! ‘‘game of Life’’ is an example of self-organized criticality has
been a controversial question. Here we view the problem from a different perspective by introducing prob-
abilities into the rules. Thereby we extend the discrete space of deterministic CA to a hypercubic space of
stochastic CA, where each corner represents a deterministic CA. We examine the scaling structure near the
‘‘game of Life’’ corner and identify a phase-transition line separating ‘‘Life’’ and ‘‘Death.’’ The transition line
ends very close to but not in the ‘‘game of Life.’’@S1063-651X~96!51408-X#

PACS number~s!: 05.40.1j, 64.60.Lx, 64.60.Ak, 64.60.Ht

The ‘‘game of Life’’ ~GOL! is a two-dimensional cellular
automaton which has been suggested to mimic aspects of
complexity in nature@1,2#. It simulates by means of a simple
algorithm the evolution of a society of cells~on a square
lattice!, where each cell is either ‘‘dead’’~0! or ‘‘alive’’ ~1!.
The evolution depends on the number of living cells among
its 8 nearest and next-nearest neighbors~Table I!: A dead
cell will only come to life if it has exactly three living neigh-
bors. A living cell will stay alive if it has two or three living
neighbors, otherwise it will die. Starting from random initial
conditions, ‘‘Life’’ will evolve through complex patterns
eventually settling down in a stationary state with static or
~time! periodic cell colonies.

Former reports on GOL have used a deterministic ap-
proach in investigating the critical properties of GOL@3–6#:
After the system has relaxed to a stationary state the system
was perturbed and the distribution of avalanches was ob-
served. For a finite lattice the decay time to the stationary
state is finite. Therefore the slow probing of a finite system
may as well be simulated by changing the ‘‘life’’ conditions
slightly. From this perspective we may study the critical
properties near the GOL by introducing probabilities into the
life conditions@7#.

First, consider the general case, where all 0’s and 1’s in
Table I are replaced by probabilitiespd, j andpl , j , whered
and l refer to the cell being dead or alive, andj50, . . . ,8 is
the number of living neighbors. Assume further that
pd,050, such that ‘‘death’’ is an absorbing state. Then com-
plete ‘‘death’’ may be viewed as the ordered state, where
‘‘life’’ provides the fluctuations. We are left with a 17-
dimensional hypercubic cellular-automaton space,
(pd, j@ j51, . . . ,8#,pl , j@ j50, . . . ,8#) where the corners are
deterministic cellular automata~CA!. We are interested in
separating the living states from the completely dead states,
i.e., we wish to distinguish the~stochastic as well as deter-
ministic! CA with a nonzero life densityF from those with

F50. At the border betweenF50 andF.0, we may have
a critical behavior with diverging length and time scales. If
the border line betweenF50 andF.0 lies close to a cor-
ner, the associated deterministic CA may also show a nearly
critical behavior. We shall see that the border line lies very
close to GOL.

Here, we illustrate the general idea by extending the rules
in Table I with just two probabilities,pd andpl ~Table II!.
We permit dead cells with two living neighbors to come to
life with a nonzero probabilitypd , generally raising the life
densityF. Moreover, a living cell with two living neighbors
will only stay alive with a probabilitypl , generally lowering
the densityF. Hence, we controlF by raisingpd from the
GOL value 0 and loweringpl from the GOL value 1.

We have carried out simulations of the CA given by Table
II at various values ofpd and pl , with emphasis on the
region near the GOL. The CA was initiated from a random
configuration with 10% living cells, and we used aL3L
55003500 lattice with periodic boundary conditions. The
density of life,f(t), was sampled over 10 000 time steps,
which was sufficient to separate the asymptotic density pro-
file from the transient behavior~see inset of Fig. 1!. From the
distribution of densities,D(f), a peak is easily identified
~Fig. 1!. The peak is centered around a valueF, which we
determined as the average value over the last 1 000 time
steps.

We observe a transition fromF50 toF.0 along a line
ending very near the GOL corner~Fig. 2!. At this line, length
and time scales diverge as at a second-order phase transition
~see below!. The region near the GOL is magnified~insets of
Fig. 2!. We find that the transition line converges to the point
(pd50,pl5pl*50.996860.0006), and not to the GOL point
(pd50,pl51). We discuss this further below.

We mention the suggestion by Langton@8# to characterize
the CA according to theirl parameter, i.e., the number of

TABLE I. The state of a cell in the ‘‘game of Life’’ depends on
the states of the cell and the 8 neighbors at the previous time step.

No. living neighbors 0 1 2 3 4 5 6 7 8

0 Dead cell 0 0 0 1 0 0 0 0 0
1 Living cell 0 0 1 1 0 0 0 0 0

TABLE II. Probability of life, depending on the states of the cell
and the 8 neighbors at the previous time step. In the ‘‘game of
Life,’’ pd50 andpl51.

No. living neighbors 0 1 2 3 4 5 6 7 8

0 Dead cell 0 0 pd 1 0 0 0 0 0
1 Living cell 0 0 pl 1 0 0 0 0 0
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transitions to a living state normalized by the total number of
transitions. For the stochastic CA given by Table II, the frac-
tion of transitions giving a living cell in the next time step
~weighted bypd and pl) is l57(41pd1pl)/128. At the
GOL, l'535/127'0.273. However,l is not constant
along the transition line. Away from the GOL, the transition
line bends downwards, andl decreases. Atpl50, we find
pd50.37, andl'0.239.

Let (pdc ,plc) indicate a point on the transition line from
F50 to F.0. Right above the line we find a power-law
behavior F(pd5pdc ,pl)}(pl2plc)

b l, and F(pd ,pl5plc)
}(pd2pdc)

bd ~Fig. 3!. Within error bars, we findb l and
bd to be identical,b l5bd5b. Moreover, we obtain the

same value forb at different transition points. The value of
b is found to beb50.560.1. In comparison, we note that
the value for ~211!-dimensional directed percolation is
bdp50.60 @9,10#.

The error bars given in Fig. 2~inset! are determined using
the condition thatF follows a power law,F}(pd2plc)

b.
To obtain upper and lower bounds for the value ofplc , we
plot log(F) vs log(pl2plc). At the lower and upper bounds
for plc there is a clear curvature~Fig. 4!. Our results for
plc are where the points lie on a straight line. In the same
way, we find upper and lower bounds forpdc . We note that
the error bars are distinctly smaller than 12pl*50.0032.

FIG. 1. The density distributionD(f), ~a! above the transition
line (pd50.02,pl50.985), and ~b! below the transition line
(pd50.02,pl50.978). The distributionD(f) was obtained over 3
runs of 10 000 time steps.D(f) has a peak situated atF54.9% in
case~a!. This peak has moved toF50 below the transition line
@case~b!#. Inset: Density of lifef as a function of timet.

FIG. 2. ~a! Phase diagram for the stochastic cellular automaton
considered~Table II!. Top left corner is the ‘‘game of Life’’~GOL!.
The line is the phase transition line between asymptotic life density
F50 andF.0. ~b! and~c!: Magnifications of the region near the
‘‘game of Life.’’ The transition line touches thepl axis at
pl*50.996860.0006.

FIG. 3. Double-logarithmic plot of the life densityF vs distance
p2pc from the critical line.h: p5pd and pc5pdc50.0416, for
fixed pl5plc50.95. d: p5pl and pc5plc50.782, for fixed
pd5pdc50.111. n: p5pd and pc5pdc50.0023, for fixed
pl5plc50.995. The straight lines have all slopesb50.5. Inset:
Life densityF vs pl for fixed pd50.005. Aboveplc50.9925,F
increases as (pl2plc)

b with b50.5.

FIG. 4. Double-logarithmic plot of the life densityF vs distance
pl2plc from the critical point (pdc50.004,plc50.9935). If plc is
chosen wrong a curvature is observed.d: plc50.9935. The best
choice for plc . The straight-line fit has slopeb50.5. h:
plc50.9945. The choice forplc is too large, and a curvature is
observed towards a non-zero value forF. n: plc50.9925. The
choice forplc is too small. ConsequentlyF approaches zero at a
finite value ofpl2plc .
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In order to further confirm the accuracy of our results for
plc , we carried out a finite-size analysis. One finite-size ef-
fect is the rounding ofF vs pl2plc very close toplc ~see,
e.g., the inset of Fig. 3!. Finite-size scaling predicts
F(pdc ,plc)}L

2b/n', where n' is the spatial correlation-
length exponent. We determined the densityF as the value
where the density distribution has its peak. In Fig. 5, logF is
shown vs logL for 10<L<1000 at the transition point
(pdc50.005,plc50.9925). On large lattices (L.100), the
density distribution was sampled over 1 to 10 runs~number
decreasing with system size!, each simulated 10 000 time
steps. On smaller lattices (L<100), a large fluctuation in
f(t) may cause the system to go extinct, i.e., to enter the
completely dead state within the simulation time. In this case
the density distribution was sampled over 24 to 92 runs. We
find b/n'50.7560.1 ~for directed percolation,b/n'

50.82@9#!. Forpl chosen slightly aboveplc ~for example, at
the upper bound forpc) logF vs logL saturates at large L
~Fig. 5!. We conclude that the size of the error bars in Fig. 2
are reasonable.

When we move from the deterministic GOL system into
the probabilistic regime, the stationary structures of the GOL
~for example, the square-cell colonies! are perturbed—and
they will therefore spread or shrink. Near the phase transi-
tion, the time evolution of the system depends crucially on
pd andpl . Above the transition line the growth rate balances
the death rate and the system keeps evolving. Below the line,
the death rate exeeds the growth rate, and the system even-
tually reaches complete ‘‘death.’’ As we go closer to the
phase-transition line the characteristic time scale diverges.
To examine the dynamics, we determined the distribution
P(t) of ‘‘death times,’’ defined as the time from when a cell
is vacated (1→0) until it again becomes occupied (0→1);
see Fig. 6. At the transition line this distribution has a power-
law behavior,P(t)5t2a, only cut off at time scales com-
parable to the total simulation length~10 000 time steps!. We
find a to bea51.48. Slightly above and below the line the

distributions have an exponential cutoff. This can be seen by
plotting taP(t) vs t on a semilogarithmic scale~lower inset
of Fig. 6!. From standard percolation theory we expect to
have a scaling form P(t)5t2a f (t/j uu) with j uu
}up2pcu2n uu, where2j uu

21 is thepl-dependent slope in the
lower inset of Fig. 6. In the upper inset of Fig. 6,j uu is
plotted vs (pl2plc) ~double-logarithmic plot! near the tran-
sition point (pdc ,plc)5(0.005,0.9925). From this plot we
find n uu.1.27 ~this value is exactly the value obtained for
directed percolation@9#!.

As shown in the phase diagram~Fig. 2!, we haveF.0
~F50) for pl.pl*50.9968 ~pl,pl* ), where pl* is the

FIG. 5. Double-logarithmic plot of the life densityF vs system
size L at the critical point (pd5pdc50.005,pl5plc50.9925)
(d). The straight-line fit has slope2b/n'520.75. For
pl50.9935 (s), slightly larger thanplc , the densityF saturates at
largeL.

FIG. 6. DistributionP(t) of ‘‘death times’’ t for pd50.005 and
at various values ofpl near plc50.9925 ~log-log plot!. s:
pl50.990. d: pl50.992. n: pl50.994. m: pl50.996. h:
pl50.998.j: pl51. The straight line has slope2a521.48. For
pl,plc and pl.plc , the ‘‘death time’’ distributions are cut off
exponentially at time scales lower than the total simulation time
~10,000 time steps!. Lower inset: Semilogarithmic plot of the res-
caled ‘‘death-time’’ distributiontaP(t), emphasizing the exponen-
tial tails. L: pl50.993. The slopes have the value21/j uu , where
j uu is the cutoff time. Upper inset: Double-logarithmic plot of time
scalej uu vs pl2plc @pd50.005#. The slope of the straight line is
2n uu521.27.

FIG. 7. Life densityF along the two edges (pd50,pl) @left
side# and (pd ,pl51) @right side# near the ‘‘game of Life,’’ situated
in the mid-point (pd50,pl51). A jump in the value ofF is seen
on both sides of the ‘‘game of Life’’. The jumps are slightly
smoothened, due to the finite simulation time.
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asymptotic value forpl for pd→0. However, we may en-
counter ‘‘first-order’’ jumps in densityF as we go from
pd.0 to pd50, simply because some of the static or peri-
odic structures known from the GOL may become stable,
and because certain perturbations produced atpd.0 are ab-
sent atpd50. Similar considerations apply to the case where
we go frompl,1 to pl51. We therefore examined these
situations carefully. In the latter case (pl,1 to pl51), we
found thatF(pl→1)5F(pl51) @pd.0#. However, in the
former case (pd.0 to pd50), we do find a jump in the
value forF. This is a consequence of the fact that along the
edge (pd50,pl) the square-cell colony remains stable. It
consists solely of cells with 3 living neighbors and is thus
unaffected by the value ofpl . Accordingly, we find that
F(pd50,pl) has a nonzeropl-independent value@pl,1#,
given by the asymptotic density of square-cell colonies. We
find that this value isF(pd50,pl)50.6%. Forpd.0, the
neighbor cells to a square-cell colony will eventually come

to life and perturb the colony. The perturbation leads to ex-
tinction or growth, dependent on the value ofpl .

Finally, we consider the GOL point, (pd ,pl)5(0,1). At
this point, ‘‘blinkers’’ and other cell colonies become stable.
Along the edge (pd50,pl) we therefore observe a jump in
life density from F50.6% to F5FGOL52.6% ~Fig. 7!.
Along the other edge (pd ,pl51), important perturbations
are produced as soon aspd.0. The perturbations cause the
life density to increase abruptly fromFGOL52.6% to
F(pd→0,pl51)'6.0% ~Fig. 7!.

In summary, we have identified a phase-transition line in
a stochastic environment of the deterministic ‘‘game of
Life’’ cellular automaton. The transition line is of the
‘‘second-order’’ type with power-law diverging length and
time scales~exponents consistent with directed percolation!.
Our simulations show that the ‘‘game of Life’’ is very near,
but not on the critical transition line.
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